
Style Guidelines for 15-110

Your programs are graded on more than just their input-output behav-
ior. It is not enough to have programs that happen to work: they need to
clearly state what they do, have some empirical evidence that they work as
advertised, and be easy for other people to read and reason about.

You may loose style points on assignments unless you follow
these style guidelines:

• Use informative names for variables.

• Use comments when the code is not straightforward.

• Use spaces between operators and assignments to improve readability
(e.g. minutes = hours * 60 instead of minutes=hours*60).

• Keep imports at the beginning of the file (you only need to import
libraries once).

• Use empty lines in functions only if they improve readability. One
empty line is enough.

• If you repeat a sequence of commands in a function, check if the code
can be reorganized so that this sequence occurs once. For example:

Good practice Bad practice

def getDigit(num, pos):

if (num < 0):

num = num * -1

x = 10 ** pos

y = 10 ** (pos - 1)

mn = (num % x) // y

return mn

def getDigit(num, pos):

if (num < 0):

num = num * -1

x = 10 ** pos

y = 10 ** (pos - 1)

mn = (num % x) // y

return mn

else:

x = 10 ** pos

y = 10 ** (pos - 1)

mn = (num % x) // y

return mn

1

• Distinguished cases that are not special should not be distinguished.
For example:

Good practice Bad practice

def add(m,n):

return m + n

def add(m,n):

if m == 0:

return n

else:

return m + n

Keep in mind that the first version of a code is rarely the best one. Once
you have a working program, look at it again and try to make it more concise
and elegant.

2

